On generalized Simes critical constants

Jiangtao Gou ${ }^{1}$ and Ajit C. Tamhane ${ }^{*, 2}$
${ }^{1}$ Department of Statistics, Northwestern University, 2006 Sheridan Road, Evanston, IL 60208, USA
${ }^{2}$ Department of Industrial Engineering and Management Sciences, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA

Received 4 November 2013; revised 26 March 2014; accepted 18 April 2014

Abstract

We consider the problem treated by Simes of testing the overall null hypothesis formed by the intersection of a set of elementary null hypotheses based on ordered p-values of the associated test statistics. The Simes test uses critical constants that do not need tabulation. Cai and Sarkar gave a method to compute generalized Simes critical constants which improve upon the power of the Simes test when more than a few hypotheses are false. The Simes constants can be viewed as the first order (requiring solution of a linear equation) and the Cai-Sarkar constants as the second order (requiring solution of a quadratic equation) constants. We extend the method to third order (requiring solution of a cubic equation) constants, and also offer an extension to an arbitrary k th order. We show by simulation that the third order constants are more powerful than the second order constants for testing the overall null hypothesis in most cases. However, there are some drawbacks associated with these higher order constants especially for $k>3$, which limits their practical usefulness.

Keywords: Multiple hypotheses; Power; Simes test; Type I error.

Additional supporting information may be found in the online version of this article at the publisher's web-site

1 Introduction

Consider $n \geq 2$ null hypotheses, H_{1}, \ldots, H_{n}, and denote their associated p-values by p_{1}, \ldots, p_{n}. Let $p_{(1)} \leq \cdots \leq p_{(n)}$ denote the ordered p-values and $H_{(1)}, \ldots, H_{(n)}$, the corresponding null hypotheses. In this paper we consider the problem of testing the overall null hypothesis $H_{0}=\bigcap_{i=1}^{n} H_{i}$. We assume that the p_{i} are independent uniform $[0,1]$ random variables under H_{0}. The dependence case will be studied in a separate paper.
The Simes (1986) test is based on the identity

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{n}\left\{p_{(i)} \leq \frac{i \alpha}{n}\right\}\right)=\alpha \tag{1}
\end{equation*}
$$

where the probability is computed under H_{0} (as are all the type I error probabilities in this paper). Thus it rejects H_{0} at level $\alpha \in(0,1)$ if at least one $p_{(i)} \leq i \alpha / n(1 \leq i \leq n)$. It is more powerful than the Bonferroni test, which rejects H_{0} if at least one $p_{i} \leq \alpha / n$.

[^0]Cai and Sarkar (2008) defined generalized Simes critical constants as any set of $c_{i}(1 \leq i \leq n)$ that satisfy

$$
\begin{equation*}
P\left(\bigcup_{i=1}^{n}\left\{p_{(i)} \leq c_{i} \alpha\right\}\right)=\alpha \tag{2}
\end{equation*}
$$

subject to the monotonicity condition:

$$
\begin{equation*}
c_{1} \leq \cdots \leq c_{n} \tag{3}
\end{equation*}
$$

In this notation, the Simes critical constants are $c_{i}=i / n$ (note that we use a different notation for critical constants from that used by Cai and Sarkar). The test based on the generalized constants rejects H_{0} if

$$
\begin{equation*}
p_{(i)} \leq c_{i} \alpha \quad \text { for at least one } i \quad(1 \leq i \leq n) \tag{4}
\end{equation*}
$$

The monotonicity condition (3) is necessary for this test to be valid as will be seen in the sequel.
In the method given by Cai and Sarkar (2008) to compute these constants, the Simes constants can be viewed as the first order (requiring solution of a linear equation) and the Cai-Sarkar constants as the second order (requiring solution of a quadratic equation) constants. By recursive application of the Cai-Sarkar method we derive third order constants and study their properties in detail. We also present a general result on the k th order constants. Finally, we compare different choices of constants in terms of power via simulation and show that the third order constants improve the power of the test compared to the first and second order constants in a majority of the cases studied.

Bernhard, Klein, and Hommel (2004) have given a nice review of the literature on global and multiple test procedures based on p-values. The following global tests discussed there use special cases of generalized Simes constants. In the case of independent p-values, Bauer (1989) proposed the socalled (n, k, α)-test which uses $c_{1}=\cdots=c_{k-1}=0$ and $c_{k}=\cdots=c_{n}=c$ where $c>0$ is determined from the equation

$$
\sum_{i=k}^{n}\binom{n}{i}(c \alpha)^{i}(1-c \alpha)^{n-i}=\alpha
$$

where k is prespecified. Röhmel and Streitberg (1987) showed that if the p-values are arbitrarily dependent then the α-level is controlled if

$$
n \sum_{i=1}^{n}\left(c_{i}-c_{i-1}\right) / i \leq 1
$$

The constants that satisfy this condition are (i) Bonferroni: $c_{1}=\cdots=c_{n}=1 / n$, (ii) Rüger (1978): $c_{1}=\cdots=c_{k-1}=0$ and $c_{k}=\cdots=c_{n}=k / n$ where k is prespecified and (iii) Hommel (1983): $c_{i}=$ $i /\left(n \sum_{j=1}^{n} j^{-1}\right)$.

Generally, a global test does not control the familywise error rate (FWER) if used as a multiple test procedure (MTP). For example, the Simes test does not control the FWER if used to reject any $H_{(i)}$ for which $p_{(i)} \leq i \alpha / n(1 \leq i \leq n)$. An MTP can be derived by constructing a closed procedure (Marcus, Peritz, and Gabriel, 1976) which uses an α-level global test for all intersection hypotheses.

Wei (1996) showed under what conditions this closed procedure has a stepwise shortcut. Toward this end, denote c_{i} by $c_{i n}$ to indicate its dependence on n. Wei (1996) showed that, if the closed procedure uses (4) to test all nonempty subset intersections of H_{i} s of size $m \leq n$ with constants $c_{i}=c_{i m}$, then $c_{i m}=c_{m}(1 \leq i \leq m)$ is a necessary and sufficient condition for the closed procedure to have a step-down shortcut and $c_{i m}=c_{i+1, m+1}(1 \leq i \leq m)$ to have a step-up shortcut. The Holm (1979) procedure is the step-down shortcut to a closed procedure that uses the Bonferroni test for all
intersection hypotheses. The Hommel (1988) procedure is the closed procedure that uses the Simes test for all intersection hypotheses. But the Simes constants do not satisfy either of Wei's conditions; hence the Hommel procedure does not have a simple stepwise shortcut. Hochberg's (1988) step-up testing procedure can be shown to be based on a conservative choice of the constants, $c_{i m}=1 /(m-i+1)$, which satisfy Wei's condition.

The outline of the paper is as follows. In Section 2 we review the derivation of second order constants. In Section 3 we extend the method to third order constants and study their properties. Section 4 gives a general result about the k th order constants. Section 5 gives tables of the second and third order constants for selected values of c_{1} and $\left(c_{1}, c_{2}\right)$, Section 6 compares the powers of the generalized Simes test for different choices of constants. Conclusions are given in Section 7. Proofs of all the results are given in the Appendix.

2 Second order generalized Simes constants

We assume throughout that the generalized Simes constants satisfy the type I error rate condition (2). Define the probabilities:

$$
A_{n}(i)= \begin{cases}P\left(p_{(1)}>c_{1} \alpha, \ldots, p_{(n)}>c_{n} \alpha\right) & i=0 \tag{5}\\ P\left(p_{(i)} \leq c_{i} \alpha, p_{(i+1)}>c_{i+1} \alpha, \ldots, p_{(n)}>c_{n} \alpha\right) & i=1, \ldots, n-1, \\ P\left(p_{(n)} \leq c_{n} \alpha\right) & i=n\end{cases}
$$

Note that $\sum_{i=0}^{n} A_{n}(i)=1$ and hence

$$
\begin{equation*}
\sum_{i=1}^{n} A_{n}(i)=1-A_{n}(0)=P\left(\bigcup_{i=1}^{n}\left\{p_{(i)} \leq c_{i} \alpha\right\}\right)=\alpha \tag{6}
\end{equation*}
$$

In the sequel we use a recursion which involves, for fixed n, expressing $A_{n}(i)$ in terms of $A_{n-1}(i)$, $A_{n-2}(i)$, etc. These lower dimensional probabilities are given by

$$
A_{n-m}(i)= \begin{cases}P\left(p_{(1)}>c_{m+1} \alpha, \ldots, p_{(n-m)}>c_{n} \alpha\right) & i=0, \tag{7}\\ P\left(p_{(i)} \leq c_{m+i} \alpha, p_{(i+1)}>c_{m+i+1} \alpha, \ldots, p_{(n-m)} \leq c_{n} \alpha\right) & i=1, \ldots, n-m-1 \\ P\left(p_{(n-m)} \leq c_{n} \alpha\right) & i=n-m\end{cases}
$$

Note that when computing $A_{n-m}(i)$ for $n-m<n, p_{(1)}$ is compared with $c_{m+1} \alpha$, not with $c_{1} \alpha ; p_{(2)}$ is compared with $c_{m+2} \alpha$, not with $c_{2} \alpha$, etc. The latter would be the case if we change the notation so that the index of c_{i} is changed from i to $n-i+1$.

Finner and Roters (1994) showed that under the monotonicity condition (3), the following recurrence relation holds:

$$
\begin{equation*}
A_{n}(i)=\frac{n c_{i} \alpha}{i} A_{n-1}(i-1) \quad(i=1, \ldots, n) \tag{8}
\end{equation*}
$$

Since this recurrence relation lies at the core of the computation of generalized Simes constants, their validity (in terms of controlling the type I error) requires that the monotonicity condition (3) must be satisfied.

By substituting this recurrence relation in (6) we get

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{n c_{i} \alpha}{i} A_{n-1}(i-1)=\alpha \tag{9}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\frac{n c_{i}}{i}=\beta_{1} \quad(1 \leq i \leq n) \tag{10}
\end{equation*}
$$

and note that $\sum_{i=1}^{n} A_{n-1}(i-1)=\sum_{i=0}^{n-1} A_{n-1}(i)=1$ then we obtain from (9) that

$$
\alpha \beta_{1} \sum_{i=0}^{n-1} A_{n-1}(i)=\alpha \beta_{1}=\alpha \Longrightarrow \beta_{1}=1
$$

Substituting $\beta_{1}=1$ back in (10) yields the Simes constants $c_{i}=i / n$. Observe that they do not require predetermining any $c_{i} \mathrm{~s}$.

Cai and Sarkar (2008) applied the recurrence relation (8) a second time by putting

$$
A_{n-1}(i-1)=\frac{n-1}{i-1} c_{i} \alpha A_{n-2}(i-2) \quad(i=2, \ldots, n)
$$

in (9) to obtain the equation

$$
\begin{equation*}
n c_{1} \alpha+n(n-1) \alpha^{2} \sum_{i=2}^{n} \frac{c_{i}}{i-1}\left(\frac{c_{i}}{i}-c_{1}\right) A_{n-2}(i-2)=\alpha \tag{11}
\end{equation*}
$$

If we set

$$
\begin{equation*}
\frac{c_{i}}{i-1}\left(\frac{c_{i}}{i}-c_{1}\right)=\beta_{2} \tag{12}
\end{equation*}
$$

and note that $\sum_{i=2}^{n} A_{n-2}(i-2)=1$, we obtain from (11) that

$$
\beta_{2}=\frac{1-n c_{1}}{n(n-1) \alpha}
$$

Substituting β_{2} back in (12) we obtain the quadratic equation:

$$
\frac{c_{i}^{2}}{i(i-1)}-\frac{c_{i} c_{1}}{i-1}-\frac{1-n c_{1}}{n(n-1) \alpha}=0
$$

The roots of this equation depend on α unlike the Simes constants. Furthermore, they depend on c_{1}, which needs to be specified. Cai and Sarkar (2008) limited the range of c_{1} to $0 \leq c_{1} \leq 1 / n$ in which case the admissible root is given by

$$
\begin{equation*}
c_{i}=\frac{c_{1} i}{2}+\sqrt{\frac{c_{1}^{2} i^{2}}{4}+\frac{\left(1-n c_{1}\right)}{\alpha} \frac{i(i-1)}{n(n-1)}} \tag{13}
\end{equation*}
$$

We can show that the range of c_{1} can be extended to $2 /[n(1+\sqrt{1-\alpha})]>1 / n$. However, the second order constants obtained by this extension do not result in any significant power gain. Therefore, we omit the details of this extension. Note that if we put $c_{1}=1 / n$ in (13) then we get the Simes constants $c_{i}=i / n$ and if we put $c_{1}=0$ then we get $c_{i}=\sqrt{[i(i-1)] /[n(n-1) \alpha]}$.

3 Third order generalized Simes constants

In this section we show how third order constants can be obtained by applying the recurrence relation (8) a second time. Substitute

$$
A_{n-2}(i-2)=\frac{n-2}{i-2} c_{i} \alpha A_{n-3}(i-3) \quad(i=3, \ldots, n)
$$

in (11) to obtain

$$
\begin{align*}
\alpha= & n c_{1} \alpha+n(n-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) \alpha^{2} A_{n-2}(0) \\
& +n(n-1)(n-2) \alpha^{3} \sum_{i=3}^{n} \frac{c_{i}}{i-2}\left[\frac{c_{i}^{2}}{i(i-1)}-\frac{c_{i} c_{1}}{i-1}\right] A_{n-3}(i-3) \tag{14}
\end{align*}
$$

Further substituting

$$
\begin{aligned}
A_{n-2}(0) & =1-\sum_{i=3}^{n} A_{n-2}(i-2) \\
& =1-(n-2) \alpha \sum_{i=3}^{n} \frac{c_{i}}{i-2} A_{n-3}(i-3)
\end{aligned}
$$

in the second term of (14) and collecting the terms we get

$$
\begin{aligned}
\alpha= & n c_{1} \alpha+n(n-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) \alpha^{2} \\
& +n(n-1)(n-2) \alpha^{3} \sum_{i=3}^{n} \frac{c_{i}}{i-2}\left[\frac{c_{i}^{2}}{i(i-1)}-\frac{c_{i} c_{1}}{i-1}-\frac{c_{2}^{2}}{2}+\frac{c_{1} c_{2}}{1}\right] A_{n-3}(i-3) .
\end{aligned}
$$

Now set

$$
\begin{equation*}
\frac{c_{i}}{i-2}\left[\frac{c_{i}^{2}}{i(i-1)}-\frac{c_{i} c_{1}}{i-1}-\frac{c_{i} c_{2}^{2}}{2}+\frac{c_{1} c_{2}}{1}\right]=\beta_{3} \tag{15}
\end{equation*}
$$

in the above equation and use the fact that $\sum_{i=3}^{n} A_{n-3}(i-3)=1$ to obtain

$$
\alpha=n c_{1} \alpha+n(n-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) \alpha^{2}+n(n-1)(n-2) \alpha^{3} \beta_{3} .
$$

Solving this equation we get

$$
\beta_{3}=\frac{1}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-c_{2} \alpha\left(\frac{c_{2}}{2}-c_{1}\right)\right] .
$$

Substituting this value of β_{3} back in (15) we obtain the following cubic equation for c_{i} :

$$
\begin{equation*}
f_{i}\left(c_{i}\right)=c_{i}^{3}+q_{i} c_{i}^{2}+r_{i} c_{i}+s_{i}=0 \tag{16}
\end{equation*}
$$

where

$$
\begin{align*}
& q_{i}=-i c_{1} \\
& r_{i}=-i(i-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) \tag{17}\\
& s_{i}=-\frac{i(i-1)(i-2)}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-c_{2} \alpha\left(\frac{c_{2}}{2}-c_{1}\right)\right] .
\end{align*}
$$

Note that the solutions of the cubic Eq. (16) depend on α as well as $\left(c_{1}, c_{2}\right)$, which must be specified. The following special cases are worth noting:
(1) If we use the same (c_{1}, c_{2}) for the third order constants as for the second order constants with

$$
\begin{equation*}
c_{2}=c_{1}+\sqrt{c_{1}^{2}-\frac{2}{\alpha(n-1)}\left(c_{1}-\frac{1}{n}\right)}, \tag{18}
\end{equation*}
$$

from (13), then the third order constants c_{3}, \ldots, c_{n} obtained by solving the cubic Eq. (16) are the same as the second order constants.
(2) As a special case of the above, if we put $c_{1}=1 / n$ and $c_{2}=2 / n$, then the solutions to the cubic Eq. (16) are $c_{i}=i / n(3 \leq i \leq n)$, which are the Simes constants. This result extends the corresponding result for second order constants where, if we put $c_{1}=1 / n$, then we get the Simes constants.
(3) If we put $c_{1}=c_{2}=0$ then the solution is

$$
\begin{equation*}
c_{i}=\sqrt[3]{\frac{i(i-1)(i-2)}{\alpha^{2} n(n-1)(n-2)}} \quad(3 \leq i \leq n) \tag{19}
\end{equation*}
$$

We now state the main theorem about the third order constants.
Theorem 1. If the following conditions hold:
(1) $\alpha \leq \frac{n}{2(n-1)}$,
(2) $0 \leq c_{1} \leq \frac{1}{n}$,
(3) $2 c_{1} \leq c_{2} \leq c_{1}+\sqrt{c_{1}^{2}+\frac{2}{\alpha(n-1)}\left(\frac{1}{n}-c_{1}\right)}$,
then the cubic Eq. (16) has a unique positive root c_{i} and c_{1}, \ldots, c_{n} satisfy the monotonicity condition (3). Furthermore, all $c_{i} \leq \alpha^{-2 / 3}<1 / \alpha$ so that the p_{i} s are compared with $c_{i} \alpha<1$.
Remark 1. The reasons for the three conditions are as follows. First, $\alpha \leq n / 2(n-1)$ holds because generally $\alpha \leq 1 / 2$. Second, the range of c_{1} can be extended to

$$
0 \leq c_{1} \leq \frac{1}{\alpha} \sqrt{\frac{1}{n-1}}\left(\sqrt{\frac{1}{n-1}}-\sqrt{\frac{1}{n-1}-\frac{2 \alpha}{n}}\right),
$$

where the upper limit is $>1 / n$. Similarly, the lower bound on c_{2} can be extended to

$$
c_{2}>\left(1+\sqrt{\frac{n-3}{3(n-1)}}\right) c_{1},
$$

which is $<2 c_{1}$; see (A.1) in the proof of Result 1 in the Appendix. However, if we extend these ranges, the cubic Eq. (16) does not have a unique positive root, which poses difficulties in choosing the particular positive root and showing the monotonicity of the chosen set of roots $c_{i}(3 \leq i \leq n)$. This point will become clearer in the proof of Theorem 1 given in the Appendix.

Cai and Sarkar (2008) showed that if $\alpha<[(i-1) n] /[i(n-1)]$ then the second order constants c_{i} are decreasing functions of c_{1} for each $i=2, \ldots, n$. The following theorem gives an extension of this result for the third order constants:

Theorem 2. If $\alpha \leq[n(n-1)] /\left[6(n-2)^{2}\right]$ and $c_{1} \in[0,1 / n]$ is fixed then the c_{i} are decreasing functions of c_{2} for each $i=3, \ldots, n$ for

$$
\begin{equation*}
c_{2} \in\left[2 c_{1}, c_{1}+\sqrt{c_{1}^{2}+\frac{2}{\alpha(n-1)}\left(\frac{1}{n}-c_{1}\right)}\right] . \tag{20}
\end{equation*}
$$

Furthermore, if $c_{1}, c_{2}, \ldots, c_{n}$ are third order constants and $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}$ are second order constants such that $c_{1}=c_{1}^{\prime}$ and c_{2} is strictly less than the upper limit of the interval (20) then $c_{2}<c_{2}^{\prime}$ and $c_{i}>c_{i}^{\prime}$ for $i=3, \ldots, n$.

Note that the upper bound on α in this theorem equals 1 for $n=3$ and is a decreasing function of n, equaling 0.3704 for $n=5,0.2344$ for $n=10$ and approaching $1 / 6$ as $n \rightarrow \infty$. Thus this theorem holds for all practical values of α and n. As a result of this theorem, given any set of second order constants, we can find third order constants such that they are larger for $i=3, \ldots, n$, which would make them more powerful in many cases. We will illustrate this numerically in Sections 5 and 6 .

$4 \boldsymbol{k}$ th order generalized Simes constants

We can apply the successive recursion process employed in the previous section $k-1$ times to obtain the k th order constants for any $k<n$. They require one to specify the first $k-1$ critical constants from which the remaining ones can be determined by solving a k th degree polynomial equation. As such, this generalization is not of much practical use but we give it here for theoretical interest.

Theorem 3. In general, one can determine the constants $c_{1} \leq \cdots \leq c_{n}$ (where $c_{1} \leq 1 / n$), which satisfy the type I error requirement (2) by specifying c_{1}, \ldots, c_{k-1} subject to certain constraints and then by solving for $c_{k+i}(0 \leq i \leq n-k)$ from the k th degree polynomial equation:

$$
\beta_{k}(i)+\frac{\alpha-\gamma_{k}}{\alpha^{k}}=0
$$

where $\beta_{k}(i)$ and γ_{k} are defined recursively by the following set of equations: Let

$$
\delta(i, n)=\frac{n c_{i}}{i}, \beta_{1}(i)=\delta(i+1, n)(i=0, \ldots, n-1) \text { and } \gamma_{1}=0
$$

Then

$$
\beta_{k+1}(i)=\left[\beta_{k}(i+1)-\beta_{k}(0)\right] \delta(i+1, n-k) \quad(i=0, \ldots, n-k-1)
$$

and

$$
\gamma_{k+1}=\gamma_{k}+\alpha^{k} \beta_{k}(0)
$$

5 Tables of generalized Simes constants

In this section we give the second and third order generalized Simes constants for $\alpha=0.05$ and $n=3,4,5$ in Tables 2 , 3 , and 4, respectively. The Simes constants $c_{i}=i / n$, which are independent of α, are also included for comparison purposes and are tabulated under Column I. The other six columns list two choices of second order constants (under columns labeled II, III) and four choices of third order constants (under columns labeled IV-VII). These choices are shown as labeled points I-VII in the admissible region of $\left(c_{1}, c_{2}\right)$ for third order constants shown in Fig. 1. The upper boundary of this region gives the admissible values of $\left(c_{1}, c_{2}\right)$ for second order constants.

Table 1 Constants $\left(c_{1}, c_{2}\right)$ for seven choices.

No.	Type	c_{1}	c_{2}
I	Simes	$\frac{1}{n}$	$\frac{2}{n}$
II	Second order	0	$\sqrt{\frac{2}{\alpha n(n-1)}}$
III		$\frac{1}{2 n}$	$\frac{1}{\sqrt{2 n}}\left(\frac{1}{\sqrt{2 n}}+\sqrt{\frac{1}{2 n}+\frac{2}{\alpha(n-1)}}\right)$
IV	Third order	0	0
V		0	$\sqrt{\frac{1}{2 \alpha n(n-1)}}$
VI		$\frac{1}{2 n}$	$\frac{1}{n}$
VII	$\frac{1}{3 n}$	$\frac{2}{3 \sqrt{n}}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{2 \alpha(n-1)}}\right)$	

Table 2 Generalized Simes constants ($n=3, \alpha=0.05$).

c_{i}	Simes I	Second order		Third order			
		II	III	IV	V	VI	VII
c_{1}	0.333	0.000	0.167	0.000	0.000	0.167	0.111
c_{2}	0.667	2.582	2.000	0.000	1.291	0.333	1.083
c_{3}	1.000	4.472	3.422	7.368	6.943	6.020	6.224

Table 3 Generalized Simes constants ($n=4, \alpha=0.05$).

c_{i}	Simes	Second order				Third order								
	I	II	III		IV	V	VI	VII						
c_{1}	0.250	0.000	0.125		0.000	0.000	0.125	0.083						
c_{2}	0.500	1.826	1.422		0.000	0.913	0.250	0.775						
c_{3}	0.750	3.162	2.431		4.642	4.415	3.813	3.959						
c_{4}	1.000	4.472	3.422		7.368	6.943	6.020	6.219						

Table 4 Generalized Simes constants ($n=5, \alpha=0.05$).

c_{i}	Simes I	Second order		Third order			
		II	III	IV	V	VI	VII
c_{1}	0.200	0.000	0.100	0.000	0.000	0.100	0.067
c_{2}	0.400	1.414	1.105	0.000	0.707	0.200	0.605
c_{3}	0.600	2.450	1.889	3.420	3.268	2.818	2.931
c_{4}	0.800	3.464	2.658	5.429	5.135	4.446	4.601
c_{5}	1.000	4.472	3.422	7.368	6.943	6.020	6.217

Figure 1 Feasible region of $\left(c_{1}, c_{2}\right)$.

These choices were determined as follows. First, I, II, and IV are the corner points of the admissible region shown in Fig. 1. Next III, V, and VI are the midpoints of the three boundaries of the region. Finally, VII is the centroid of the triangle formed by the vertices I, II, and IV. The (c_{1}, c_{2})-values for columns I-VII are listed in Table 1.
Note that the upper bound on all the second order constants can be shown to be $\alpha^{-1 / 2}=4.472$, which is achieved for c_{n} under column II when $c_{1}=0$. In Theorem 1, the upper bound on all the third order constants can be shown to be $\alpha^{-2 / 3}=7.368$ which is achieved for c_{n} under column IV when $c_{1}=c_{2}=0$.

6 Simulation comparisons

Since all constants satisfy (2), they all control the type I error. So we focus on comparing their powers. Note that here power is simply the probability of rejecting $H_{0}=\bigcap_{i=1}^{n} H_{i}$ when at least one H_{i} is false. Let m be the number of false null hypotheses. We studied the following configurations: $n=10$ null hypotheses, $\alpha=0.05$, and $m=2(2) 10$. For each configuration we made a total of 10^{9} simulation runs. In each run we generated $n-m$ values of $N(0,1)$ and m values of $N\left(\delta_{i}, 1\right)$ random variates where the means δ_{i} were chosen in two different ways:

1. Constant Means Configuration: $\delta_{i}=\delta(1 \leq i \leq m)$ where $\delta=0.5,1.0,1.5$.
2. Linear Means Configuration: $\delta_{i}=i \gamma(1 \leq i \leq m)$ where the slope $\gamma=2 \delta /(m+1)$ and $\delta=0.5$, $1.0,1.5$.

The slope for the linear means configuration is chosen so that the average of the $\delta_{i} s$ is δ, the same as for the constant means configuration case. Next we transformed the normal variates to p-values and then used these same set of p-values to test H_{0} with different choices of constants. The Simes constants (choice I) were used as the basis for comparison. The simulated powers for the constant configuration case are given in Table 5 and those for the linear means configuration case are given in Table 6.
The differences in powers of the six choices, II through VII, of generalized Simes constants with respect to the Simes constants are plotted in Fig. 2 and in Fig. 3 for constant and linear means configurations, respectively, for the remaining six choices of constants as bar charts with the bars labeled as II-VII. The Simes power is noted at the top of each bar chart.
The following conclusions can be drawn from these bar charts.

Table 5 Power comparison (constant means configuration, $n=10, \alpha=0.05$).

m	δ	Simes	Second order		Third order			
			II	III	IV	V	VI	VII
2	0.5	0.077	0.084	0.083	0.086	0.087	0.085	0.087
	1.0	0.151	0.158	0.167	0.151	0.159	0.167	0.170
	1.5	0.300	0.290	0.328	0.241	0.277	0.315	0.321
4	0.5	0.104	0.127	0.121	0.137	0.137	0.129	0.133
	1.0	0.245	0.314	0.303	0.324	0.335	0.322	0.334
	1.5	0.494	0.605	0.599	0.594	0.626	0.618	0.635
6	0.5	0.131	0.176	0.162	0.200	0.199	0.180	0.188
	1.0	0.331	0.476	0.442	0.524	0.529	0.493	0.511
	1.5	0.642	0.818	0.790	0.848	0.858	0.835	0.849
8	0.5	0.157	0.231	0.206	0.272	0.269	0.239	0.249
	1.0	0.410	0.622	0.569	0.701	0.699	0.651	0.670
	1.5	0.751	0.927	0.901	0.957	0.958	0.943	0.950
10	0.5	0.183	0.288	0.252	0.351	0.344	0.302	0.317
	1.0	0.482	0.741	0.679	0.830	0.824	0.778	0.795
	1.5	0.831	0.974	0.958	0.990	0.990	0.984	0.986

$m=$ number of false hypotheses

Table 6 Power comparison (linear means configuration, $n=10, \alpha=0.05$).

m	δ	Simes I	Second order		Third order			
			II	III	IV	V	VI	VII
2	0.5	0.080	0.085	0.085	0.087	0.088	0.087	0.088
	1.0	0.171	0.161	0.182	0.149	0.159	0.180	0.181
	1.5	0.358	0.282	0.371	0.227	0.264	0.356	0.354
4	0.5	0.114	0.133	0.130	0.139	0.141	0.136	0.140
	1.0	0.307	0.343	0.359	0.327	0.351	0.365	0.374
	1.5	0.633	0.646	0.702	0.567	0.640	0.694	0.707
6	0.5	0.147	0.189	0.179	0.206	0.208	0.194	0.202
	1.0	0.429	0.535	0.529	0.543	0.566	0.557	0.574
	1.5	0.801	0.873	0.884	0.850	0.886	0.896	0.905
8	0.5	0.180	0.251	0.231	0.285	0.285	0.260	0.271
	1.0	0.534	0.696	0.672	0.731	0.745	0.722	0.739
	1.5	0.896	0.963	0.961	0.964	0.974	0.973	0.977
10	0.5	0.213	0.317	0.286	0.370	0.368	0.331	0.345
	1.0	0.622	0.815	0.782	0.861	0.866	0.841	0.855
	1.5	0.948	0.991	0.989	0.994	0.995	0.994	0.995

$m=$ number of false hypotheses.

Figure 2 Power gains of second and third order generalized Simes critical constants over the first order Simes critical constants (constant δ_{i} configuration).

1. The original Simes constants compare favorably in power with higher order constants only when $m=2$ hypotheses are false. This result agrees with that observed by Cai and Sarkar for second order constants.
2. For each fixed δ, the power gains of both the second order and third order constants increase as the number of false null hypotheses increases.
3. Third order constants generally yield higher powers than second order constants.
4. Maximum power gains by second order and third order constants are attained at $\delta=1.0$. This is natural since as δ decreases, all powers approach α and as δ increases, all powers approach 1. So the maximum power gains are achieved at a medium value of δ.
5. Generally, choices IV and V have the highest power gains but they are less powerful than the Simes constants when $m=2$ and $\delta=1.5$, so they are recommended in other cases. On the other hand, choices VI and VII have uniformly high power gains (although not always the highest) in all cases, and are thus robust to unknown number of false hypotheses, with choice VII beating choice VI in all cases. Thus choice VII, which is approximately the centroid of the admissible region of $\left(c_{1}, c_{2}\right)$, is recommended.

Figure 3 Power gains of second and third order generalized Simes critical constants over the first order Simes critical constants (linear trend δ_{i} configuration).

7 Concluding remarks

We have shown how higher order generalized Simes constants can be derived and computed. The original Simes constants compare favorably in power with higher order generalizations only when a few hypotheses are false. When more hypotheses are false both the second order and third order constants are significantly more powerful with the third order constants being more so.

Although not reported here due to space constraints, we also made power comparisons between Bauer's (1989) (n, k, α)-test and the generalized Simes test and found that the latter provides a more powerful test. The details are available from the authors.
Associated with these higher powers there are also some drawbacks: First, one needs to specify c_{1} for second order constants and $\left(c_{1}, c_{2}\right)$ for third order constants (more generally, $\left(c_{1}, \ldots, c_{k-1}\right)$ for the k th order constants for $k<n$). Second, the k th order constants require solving a k th degree polynomial equation and choosing a suitable positive root satisfying the monotonicity condition which is not easy.

All the comparisons in this paper are restricted to the independence case. We have made some preliminary simulation studies under dependence which suggest that the higher order constants control the type I error under negative dependence but not under positive dependence. This is opposite of the behavior of the Simes constants (Samuel-Cahn 1996, Sarkar and Chang 1997, Sarkar 1998). We
have developed a method to robustify the second and third order constants so that they approximately control the type I error, while still achieving substantial power gains over the Simes constants. We will report these developments in a separate paper.

Finally, one could obtain MTPs by applying the closure method using these generalized Simes constants. These MTPs will not have a step-up shortcut since the constants do not satisfy Wei's (1996) condition; however they will be more powerful than the Hochberg, Hommel or Rom MTPs.

Acknowledgments We thank two referees for their comments which helped to improve the paper.

Conflict of interest

The authors have declared no conflict of interest.

Appendix

Proof of Theorem 1. The proof is in a number of parts stated as Results. For compactness of notation we will denote the cubic $f_{i}\left(c_{i}\right)$ defined in (16) by $f(x)$, dropping the subscript i from $f_{i}(x), q_{i}$, r_{i}, and s_{i} until needed in the final part of the proof. The proof involves studying the critical points (where the derivative $f^{\prime}(x)$ of $f(x)$ is zero) and roots of $f(x)$ (where $f(x)=0$). Basically, we show that under the three conditions stated in the theorem, $f(x)$ has only one positive root and $f(0) \leq 0$. The possible shapes of $f(x)$ are shown in Fig. A1. We want to rule out the cases (a) and (b).

Result 1. When $c_{2} \geq 2 c_{1}$, the cubic $f(x)$ has two real critical points corresponding to the four cubic curves shown in Fig. A1.

Proof of Result 1. The derivative of $f(x)$ is

$$
f^{\prime}(x)=3 x^{2}+2 q+r=3 x^{2}-2 i c_{1} x-i(i-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) .
$$

The discriminant of this quadratic is

$$
\begin{aligned}
\Delta & =4 i\left[i c_{1}^{2}+3(i-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right)\right] \\
& =2 i\left[3(i-1)\left(c_{2}-c_{1}\right)^{2}-(i-3) c_{1}^{2}\right]
\end{aligned}
$$

Then $f^{\prime}(x)=0$ will have two real roots if and only if

$$
\begin{aligned}
\Delta>0 & \Longleftrightarrow 3(i-1)\left(c_{2}-c_{1}\right)^{2}>(i-3) c_{1}^{2} \\
& \Longleftrightarrow c_{2}-c_{1}>\sqrt{\frac{i-3}{3(i-1)}} c_{1} \quad\left(\text { since } c_{2} \geq c_{1}\right) \\
& \Longleftrightarrow c_{2}>\left(1+\sqrt{\frac{i-3}{3(i-1)}}\right) c_{1} .
\end{aligned}
$$

Since the above must be true for all $i=3, \ldots, n$, we must have

$$
\begin{equation*}
c_{2}>\max _{3 \leq i \leq n}\left(1+\sqrt{\frac{i-3}{3(i-1)}}\right) c_{1}=\left(1+\sqrt{\frac{n-3}{3(n-1)}}\right) c_{n} . \tag{A.1}
\end{equation*}
$$

(a)

(b)

(c)

(d)

Figure A1 Different cases of the cubic function of $f(x)$.

Figure A2 Cubic curves $f(x)$ with one positive root and $f(0) \leq 0$.

But

$$
c_{2} \geq 2 c_{1}>\left(1+\sqrt{\frac{n-3}{3(n-1)}}\right) c_{1}
$$

thus satisfying the inequality (A.1). This completes the proof of Result 1.
Result 2. The cubic $f(x)$ has one positive and one nonpositive critical points if $c_{2} \geq 2 c_{1}$ corresponding to the last three cubic curves in Fig. A1.

Proof of Result 2. Let x_{1} and x_{2} denote the two roots of the quadratic $f^{\prime}(x)=0$. Then we have

$$
x_{1}+x_{2}=\frac{2}{3} i c_{1}>0 \text { and } x_{1} x_{2}=\frac{1}{6} i(i-1) c_{2}\left(2 c_{1}-c_{2}\right) .
$$

Since $x_{1}+x_{2}>0$, at least one of the roots must be positive. If $c_{2} \geq 2 c_{1}$ then $x_{1} x_{2} \leq 0$ and so one root must be positive and the other must be nonpositive. Note that if $c_{2}<2 c_{1}$ then $x_{1} x_{2}>0$ and so both roots must be positive, a case that we have excluded.

Result 3. If $c_{2} \geq 2 c_{1}$ and $s \leq 0$ then $f(x)$ has exactly one positive root corresponding to the last two cubic curves in Fig. A1.

Proof of Result 3. If $c_{2} \geq 2 c_{1}$, the cubic $f(x)$ has one nonpositive critical point \tilde{x}_{1} and one positive critical point \tilde{x}_{2} such that $\tilde{x}_{1} \leq 0<\tilde{x}_{2}$. Because the coefficient of x^{3} in $f(x)$ is positive, we know that \tilde{x}_{1} is a local maximum and \tilde{x}_{2} is a local minimum. Because $f(0)=s \leq 0$ and the local minimum $\tilde{x}_{2}>0$, we know that $f\left(\tilde{x}_{2}\right)<0$. Since $\lim _{x \rightarrow \infty} f(x)=\infty$, by using the intermediate value theorem, we conclude that a positive root $x^{+} \in\left(\tilde{x}_{2}, \infty\right)$ exists.

If the cubic equation $f(x)=0$ has one real root and two complex conjugate roots, it is clear that $f(x)$ has exactly one positive root. If the roots of $f(x)=0$ are all real, the roots x_{1}^{-}, x_{2}^{-}, and x^{+} satisfy that $x_{1}^{-} \leq \tilde{x}_{1} \leq x_{2}^{-}<\tilde{x}_{2}<x^{+}$as shown in Fig. A2. Note that $\tilde{x}_{2} \neq x_{2}^{-}$and $\tilde{x}_{2} \neq x^{+}$because $f\left(\tilde{x}_{2}\right)<0$.

Finally, we must have $x_{1}^{-} \leq x_{2}^{-} \leq 0$. That $x_{1}^{-} \leq 0$ follows from $\tilde{x}_{1} \leq 0$. If $x_{2}^{-}>0$, then for any $x \in\left(x_{1}^{-}, x_{2}^{-}\right), f(x)>0$. Since $0 \in\left(x_{1}^{-}, x_{2}^{-}\right)$we have $f(0)>0$, which is a contradiction. Hence we conclude that $x_{2}^{-} \leq 0$. Because $x_{1}^{-} \leq x_{2}^{-} \leq 0$, we conclude that x^{+}is the only positive root of $f(x)=0$.

The next result shows under what conditions is $s \leq 0$.
Result 4. We have that

$$
s=-\frac{i(i-1)(i-2)}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-\frac{c_{2}^{2} \alpha}{2}+c_{2} c_{1} \alpha\right] \leq 0
$$

if and only if

$$
\begin{equation*}
c_{1} \leq c_{2} \leq c_{1}+\sqrt{c_{1}^{2}-\frac{2}{\alpha(n-1)}\left(c_{1}-\frac{1}{n}\right)} \tag{A.2}
\end{equation*}
$$

and

$$
\begin{align*}
& c_{1} \leq \frac{1}{\alpha} \sqrt{\frac{1}{n-1}}\left(\sqrt{\frac{1}{n-1}}-\sqrt{\frac{1}{n-1}-\frac{2 \alpha}{n}}\right) \text { or } \\
& c_{1} \geq \frac{1}{\alpha} \sqrt{\frac{1}{n-1}}\left(\sqrt{\frac{1}{n-1}}+\sqrt{\frac{1}{n-1}-\frac{2 \alpha}{n}}\right) . \tag{A.3}
\end{align*}
$$

Proof of Result 4. Note that

$$
\begin{align*}
s \leq 0 & \Longleftrightarrow \frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-\frac{c_{2}^{2} \alpha}{2}+c_{1} c_{2} \alpha \geq 0 \tag{A.4}\\
& \Longleftrightarrow c_{2}^{2}-2 c_{1} c_{2}+\frac{2}{\alpha(n-1)}\left(c_{1}-\frac{1}{n}\right) \leq 0 . \tag{A.5}
\end{align*}
$$

For this quadratic in c_{2} to have real roots, its discriminant must be ≥ 0. So

$$
\begin{align*}
c_{1}^{2} & -\frac{2}{\alpha(n-1)}\left(c_{1}-\frac{1}{n}\right) \geq 0 \\
& \Longleftrightarrow c_{1}^{2}-\frac{2 c_{1}}{\alpha(n-1)}+\frac{2}{\alpha n(n-1)} \geq 0 \tag{A.6}
\end{align*}
$$

The two roots of this quadratic inequality in c_{1} are

$$
\frac{1}{2}\left[\frac{2}{\alpha(n-1)} \pm \sqrt{\frac{4}{\alpha^{2}(n-1)^{2}}-\frac{8}{\alpha n(n-1)}}\right]=\frac{1}{\alpha} \sqrt{\frac{1}{n-1}}\left(\sqrt{\frac{1}{n-1}} \pm \sqrt{\frac{1}{n-1}-\frac{2 \alpha}{n}}\right)
$$

In the above, we have used the fact that

$$
\alpha \leq \frac{n}{2(n-1)} \Longrightarrow \frac{1}{n-1}-\frac{2 \alpha}{n} \geq 0
$$

Furthermore, the quadratic is convex and symmetric about $c_{1}=1 / \alpha(n-1) \geq n / 2(n-1)$. Hence it follows that the inequality (A.6) will be satisfied if c_{1} is either \leq the smaller root or \geq the larger root.

Returning to (A.5), we see that c_{2} must lie inside the interval

$$
c_{1} \pm \sqrt{c_{1}^{2}-\frac{2}{\alpha(n-1)}\left(c_{1}-\frac{1}{n}\right)}
$$

Since $c_{2} \geq c_{1}$, the limits (A.2) on c_{2} follow.
Result 5. Under the three conditions stated in Theorem 1, we have $c_{i} \geq c_{2}$ for $i=3, \ldots, n$.
Proof of Result 5. Define

$$
g(x)=f(x)-s=x^{3}-i c_{1} x^{2}-i(i-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right) x
$$

Then

$$
\begin{aligned}
g\left(c_{2}\right) & =c_{2}^{3}-i c_{1} c_{2}^{2}-i(i-1)\left(\frac{c_{2}}{2}-c_{1}\right) c_{2}^{2} \\
& =c_{2}^{2}\left[i(i-2) c_{1}-\left(\frac{i(i-1)}{2}-1\right) c_{2}\right]
\end{aligned}
$$

Note that when $i \geq 3$,

$$
\frac{i(i-1)}{2}-1>0
$$

Using the condition that $2 c_{1} \leq c_{2}$, we deduce

$$
\begin{aligned}
g\left(c_{2}\right) & \leq c_{2}^{2}\left[\frac{i(i-2)}{2} c_{2}-\left(\frac{i(i-1)}{2}-1\right) c_{2}\right] \\
& =\frac{c_{2}^{3}}{2}(2-i) \\
& <0
\end{aligned}
$$

where the last step follows from the fact that $i \geq 3$. Since $s<0$ from Result 3, it follows that $f\left(c_{2}\right)=$ $g\left(c_{2}\right)+s<0$. However, $f\left(c_{i}\right)=0$. Given that $f(x)$ has only one positive root, namely, $x=c_{i}$, it follows that $c_{i}>c_{2}$ and this is true for all $i=3, \ldots, n$.

We are now ready to complete the proof of Theorem 1. First we prove a lemma.
Lemma 1. Let $h_{1}(x)$ and $h_{2}(x)$ be two continuous functions on the interval $[c, \infty)$, with continuous first derivatives. Suppose that $h_{1}(c) \leq h_{2}(c)<0$ and $h_{1}^{\prime}(x) \leq h_{2}^{\prime}(x)$ for all $x \in[c, \infty)$. Further suppose that $h_{1}(x)$ and $h_{2}(x)$ have unique roots x_{1}^{*} and x_{2}^{*}, respectively. Then $x_{1}^{*} \geq x_{2}^{*}$.
Proof of Lemma 1. First we show that $h_{1}\left(x_{2}^{*}\right) \leq 0$. Write

$$
h_{1}\left(x_{2}^{*}\right)-h_{1}(c)=\int_{c}^{x_{2}^{*}} h_{1}^{\prime}(x) d x \leq \int_{c}^{x_{2}^{*}} h_{2}^{\prime}(x) d x=h_{2}\left(x_{2}^{*}\right)-h_{2}(c)=-h_{2}(c) \leq-h_{1}(c) .
$$

Hence $h_{1}\left(x_{2}^{*}\right) \leq 0$. Since there is a unique x_{1}^{*} that satisfies $h_{1}\left(x_{1}^{*}\right)=0$, it follows that $x_{1}^{*} \geq x_{2}^{*}$.

Returning to the proof of the theorem, we know from Results 4 and 5 that there is a unique $c_{i} \in\left(c_{2}, \infty\right)$ such that $f_{i}\left(c_{i}\right)=0$. Note that when $i \geq j$,

$$
q_{i} \leq q_{j} \leq 0, r_{i} \leq r_{j} \leq 0 \text { and } s_{i} \leq s_{j} \leq 0
$$

so

$$
f_{i}\left(c_{2}\right)=c_{2}^{3}+p_{i} c_{2}^{2}+q_{i} c_{2}+r_{i} \leq c_{2}^{3}+p_{j} c_{2}^{2}+q_{j} c_{2}+r_{j}=f_{j}\left(c_{2}\right)
$$

By using Result 5, $f_{i}\left(c_{2}\right)<0$ for all $i=3, \ldots, n$, so $f_{i}\left(c_{2}\right) \leq f_{j}\left(c_{2}\right)<0$ if $i \geq j$.
Meanwhile, when $x \in\left[c_{2}, \infty\right)$,

$$
f_{i}^{\prime}(x)=3 x^{2}+2 q_{i} x+r_{i} \leq 3 x^{2}+2 q_{j} x+r_{j}=f_{j}^{\prime}(x)
$$

By using Lemma 1 , we conclude that $c_{i} \geq c_{j}$ if $i \geq j$. Therefore the monotonicity condition (3) holds.
Finally, we show that all $c_{i} \leq \alpha^{-2 / 3}$. If $c_{1}=c_{2}=0$, then it is easy check that $c_{n}=\alpha^{-2 / 3}$ by substituting $i=n$ in (19). It is also easy to check that

$$
f_{n}\left(\alpha^{-2 / 3}\right)=\alpha^{-2} n c_{1}\left(1-\alpha^{2 / 3}\right)+\alpha^{-1} n(n-1) c_{2}\left(\frac{c_{2}}{2}-c_{1}\right)\left(1-\alpha^{1 / 3}\right)
$$

and $f_{n}\left(\alpha^{-2 / 3}\right) \geq 0$ because $c_{2} \geq 2 c_{1}$ according to Condition 3. Since $f(0) \leq 0$, we conclude that $c_{n} \leq \alpha^{-2 / 3}$ for any choice of c_{1} and c_{2} by the intermediate value theorem subject to the three conditions stated in Theorem 1. Because the $c_{i} \mathrm{~s}$ are monotone it follows that all $c_{i}<\alpha^{-2 / 3}$. This completes the proof of Theorem 1.

Proof of Theorem 2. For third order constants, the cubic equation for c_{i} is given by (16) where p_{i}, q_{i}, r_{i} are given by (17). The second order case is a special case of the third order case when c_{2} is given by (18).

First, we need to show that if $\alpha \leq n(n-1) / 6(n-2)^{2}$ then we have $c_{i} \leq(i-2) / \alpha(n-2)$ for $i=$ $3, \ldots, n$. This is equivalent to showing that $\tilde{c}_{i}=c_{i} /(i-2) \leq 1 / \alpha(n-2)$ for $i=3, \ldots, n$. The cubic equation for \tilde{c}_{i} is

$$
\begin{equation*}
\tilde{f}_{i}(x)=x^{3}+\tilde{q}_{i} x^{2}+\tilde{r}_{i} x+\tilde{s}_{i}=0 \tag{A.7}
\end{equation*}
$$

where $\tilde{q}_{i}=q_{i} /(i-2), \tilde{r}_{i}=r_{i} /(i-2)^{2}$, and $\tilde{s}_{i}=s_{i} /(i-2)^{3}$. Using the formulae (17), it is easy to check that $\tilde{q}_{i}, \tilde{r}_{i}$, and \tilde{s}_{i} are increasing functions of i for $i \geq 3$. Under the conditions in Theorem 1 , by following a similar argument, we conclude that $\tilde{f}_{i}(x)=0$ has a unique positive root \tilde{c}_{i}.

If $i \geq j$, then $\tilde{q}_{j} \leq \tilde{q}_{i} \leq 0, \tilde{r}_{j} \leq \tilde{r}_{i} \leq 0$, and $\tilde{s}_{j} \leq \tilde{s}_{i} \leq 0$. We have $\tilde{f}_{j}(0)=\tilde{s}_{j} \leq \tilde{s}_{i}=\tilde{f}_{i}(0) \leq 0$, and $\tilde{f}_{j}^{\prime}(x)=3 x^{2}+2 \tilde{q}_{j} x+\tilde{r}_{j} \leq 3 x^{2}+2 \tilde{q}_{i} x+\tilde{r}_{i}=\tilde{f}_{i}^{\prime}(x)$ for any $x \geq 0$. By using the Lemma 1 , we conclude that the positive root $\tilde{c}_{i} \leq \tilde{c}_{j}$.

Because $\tilde{c}_{i} \leq \tilde{c}_{j}$, in order to show that $\tilde{c}_{i} \leq 1 / \alpha(n-2)$ for $i \geq 3$, we only need to show this result for $i=3$, that is, that $\tilde{c}_{3}=c_{3} \leq 1 / \alpha(n-2)$.

Note that

$$
c_{3} \leq \frac{1}{\alpha(n-2)} \Longleftrightarrow f_{3}\left(\frac{1}{\alpha(n-2)}\right) \geq 0
$$

Now,

$$
f_{3}\left(\frac{1}{\alpha(n-2)}\right)=\frac{1}{\alpha^{3}(n-2)^{3}}-\frac{3 c_{1}}{\alpha^{2}(n-2)^{2}}-\frac{6 c_{2}}{\alpha(n-2)}\left(\frac{c_{2}}{2}-c_{1}\right)
$$

$$
\begin{aligned}
& -\frac{6}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-\frac{c_{2}^{2} \alpha}{2}+c_{1} c_{2} \alpha\right] \\
= & \frac{1}{\alpha^{3}(n-2)^{3}}-\frac{3 c_{1}}{\alpha^{2}(n-2)^{2}}-\frac{6}{\alpha^{2}(n-2)(n-1)}\left(\frac{1}{n}-c_{1}\right) \\
= & \frac{1}{\alpha^{2}(n-2)}\left[\frac{1}{\alpha(n-2)^{2}}-\frac{6}{(n-1) n}+3 c_{1}\left(\frac{2}{n-1}-\frac{1}{n-2}\right)\right] \\
\geq & \frac{1}{\alpha^{3}(n-2)}\left[\frac{1}{(n-2)^{2}}-\frac{6 \alpha}{(n-1) n}\right] \\
\geq & 0
\end{aligned}
$$

because $2 /(n-1) \geq 1 /(n-2)$ when $n \geq 3$ and $\alpha \leq n(n-1) / 6(n-2)^{2}$. We conclude that $c_{i} \leq(i-$ 2) $/ \alpha(n-2)$ for any $i=3, \ldots, n$.

Next, let $c_{2}^{*} \leq c_{2}^{* *}$ denote two values of c_{2} satisfying (18). Further denote the cubic function based on $\left(c_{1}, c_{2}^{*}\right)$ as $f_{i}^{*}(x)$ and the cubic function based on $\left(c_{1}, c_{2}^{* *}\right)$ as $f_{i}^{* *}(x)$. Then for any $0 \leq x \leq$ $(i-2) / \alpha(n-2)$, we have

$$
\begin{aligned}
f_{i}^{* *}(x)-f_{i}^{*}(x)= & x^{3}-i c_{1} x^{2}-i(i-1) c_{2}^{* *}\left(\frac{c_{2}^{* *}}{2}-c_{1}\right) x \\
& -\frac{i(i-1)(i-2)}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-\frac{\left(c_{2}^{* *}\right)^{2} \alpha}{2}+c_{1} c_{2}^{* *} \alpha\right] \\
& -x^{3}+i c_{1} x^{2}+i(i-1) c_{2}^{*}\left(\frac{c_{2}^{*}}{2}-c_{1}\right) x \\
& +\frac{i(i-1)(i-2)}{\alpha^{2}(n-2)}\left[\frac{1}{n(n-1)}-\frac{c_{1}}{n-1}-\frac{\left(c_{2}^{*}\right)^{2} \alpha}{2}+c_{1} c_{2}^{*} \alpha\right] \\
= & c_{2}^{* *}\left(\frac{c_{2}^{* *}}{2}-c_{1}\right) i(i-1)\left(\frac{i-2}{\alpha(n-2)}-x\right) \\
& -c_{2}^{*}\left(\frac{c_{2}^{*}}{2}-c_{1}\right) i(i-1)\left(\frac{i-2}{\alpha(n-2)}-x\right) \\
= & {\left[c_{2}^{* *}\left(\frac{c_{2}^{* *}}{2}-c_{1}\right)-c_{2}^{*}\left(\frac{c_{2}^{*}}{2}-c_{1}\right)\right] i(i-1)\left(\frac{i-2}{\alpha(n-2)}-x\right) } \\
\geq & 0
\end{aligned}
$$

Note that the unique positive root c_{i} of the cubic equation $f_{i}(x)=0$ is in $[0,(i-2) / \alpha(n-2)]$, and $f_{i}^{* *}(x) \geq f_{i}^{*}(x)$ on the range $[0,(i-2) /\{\alpha(n-2)\}]$, so we conclude that the root $c_{i}^{* *}$ is less than the root c_{i}^{*}.

Next, let $c_{1}, c_{2}, \ldots, c_{n}$ denote the third order constants and $c_{1}^{\prime}, c_{2}^{\prime}, \ldots, c_{n}^{\prime}$ denote the second order constants such that $c_{1}=c_{1}^{\prime}$. Note that c_{2}^{\prime} given by (18) is the upper limit of the interval (20), so $c_{2}<c_{2}^{\prime}$. As noted just before Theorem 1, if we choose $c_{2}=c_{2}^{\prime}$ then the third order constants are the same as the second order constants, that is, $c_{i}=c_{i}^{\prime}$ for $i=1, \ldots, n$. But, since $c_{2}<c_{2}^{\prime}$, and since the c_{i}^{\prime} are decreasing functions of c_{2}, it follows that $c_{i}>c_{i}^{\prime}$ for $i=3, \ldots, n$.

Proof of Theorem 3. First note that $A_{n}(i)=\alpha \delta(i, n) A_{n-1}(i-1)$, we have

$$
\begin{aligned}
\alpha & =1-A_{n}(0)=\sum_{i=1}^{n} A_{n}(i)=\alpha \sum_{i=1}^{n} \delta(i, n) A_{n-1}(i-1) \\
& =\gamma_{1}+\alpha \sum_{i=1}^{n} \beta_{1}(i-1) A_{n-1}(i-1)=\gamma_{1}+\alpha \sum_{i=0}^{n-1} \beta_{1}(i) A_{n-1}(i)
\end{aligned}
$$

Now assume the induction hypothesis that $\alpha=\gamma_{k}+\alpha^{k} \sum_{i=0}^{n-k} \beta_{k}(i) A_{n-k}(i)$. Then we have

$$
\begin{aligned}
\alpha & =\gamma_{k}+\alpha^{k} \sum_{i=0}^{n-k} \beta_{k}(i) A_{n-k}(i) \\
& =\gamma_{k}+\alpha^{k} \beta_{k}(0) A_{n-k}(0)+\alpha^{k} \sum_{i=1}^{n-k} \beta_{k}(i) A_{n-k}(i) \\
& =\gamma_{k}+\alpha^{k} \beta_{k}(0)\left(1-\sum_{i=1}^{n-k} A_{n-k}(i)\right)+\alpha^{k} \sum_{i=1}^{n-k} \beta_{k}(i) A_{n-k}(i) \\
& =\gamma_{k}+\alpha^{k} \beta_{k}(0)+\alpha^{k} \sum_{i=1}^{n-k}\left(\beta_{k}(i)-\beta_{k}(0)\right) A_{n-k}(i) \\
& =\gamma_{k+1}+\alpha^{k+1} \sum_{i=1}^{n-k}\left(\beta_{k}(i)-\beta_{k}(0)\right) \delta(i, n-k) A_{n-k-1}(i-1) \\
& =\gamma_{k+1}+\alpha^{k+1} \sum_{i=0}^{n-k-1}\left(\beta_{k}(i+1)-\beta_{k}(0)\right) \delta(i+1, n-k) A_{n-k-1}(i) \\
& =\gamma_{k+1}+\alpha^{k+1} \sum_{i=0}^{n-k-1} \beta_{k+1}(i) A_{n-k-1}(i) .
\end{aligned}
$$

Thus assuming the induction hypothesis for k, we have shown it to be true for $k+1$.
Second, by setting $\beta_{k}(i)=\beta_{k}$ as a constant and noting that $\sum_{i=0}^{n-k} A_{n-k}(i)=1$ yields

$$
\beta_{k}=\frac{\alpha-\gamma_{k}}{\alpha^{k}}
$$

Substituting for β_{k} we obtain the polynomial equation for c_{k+i}

$$
\beta_{k}(i)+\frac{\alpha-\gamma_{k}}{\alpha^{k}}=0
$$

It is clear that this polynomial equation has degree k by using induction on k to check the degree of $\beta_{k}(i)$.

References

Bauer, P. (1989). Sequential tests of hypotheses in consecutive trials. Biometrical Journal 31, 663-676.
Bernhard, G., Klein, M. and Hommel, M. (2004). Global and multiple test procedures using ordered p-values-a review. Statistical Papers 45, 1-14.
Cai, G. and Sarkar, S. K. (2008). Modified Simes' critical values under independence. Statistics \& Probability Letters 78, 1362-1378.
Dalal, S. R. and Mallows, C. L. (1992). Buying with exact confidence. Annals of Applied Probability 2, 752-765.
Finner, H. and Roters, M. (1994). On the limit behavior of the joint distribution of order statistics. Annals of Institute of Statistical Mathematics 46, 343-349.
Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple significance testing. Biometrika 75, 800-802.
Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics 6, 65-70.
Hommel, G. (1983). Tests of the overall hypothesis for arbitrary dependence structures. Biometrical Journal 25, 423-430.
Hommel, G. (1988). A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 75, 383-386.
Liu, W. (1996). Multiple tests of a non-hierarchical finite family of hypotheses. Journal of Royal Statistical Society, Ser. B 58, 455-461.
Marcus, R., Peritz, E. and Gabriel, K. R. (1976). On closed testing procedures with special reference to ordered analysis of variance. Biometrika 63, 655-660.
Rom, D. M. (1990). A sequentially rejective test procedure based on a modified Bonferroni inequality. Biometrika 77, 663-665.
Rüger, B. (1978). Das maximale Signifikanzniveau des Tests: Lehne H_{0} ab, wenn k unter gegebenen Tests zur Ablehnung führen. Metrika 25, 171-178.
Samuel-Cahn, E. (1996). Is the Simes improved Bonferroni procedure conservative? Biometrika 83, 928-933.
Sarkar, S. (1998). Some probability inequalities for ordered MTP $_{2}$ random variables: A proof of the Simes conjecture. Annals of Statistics 26, 495-504.
Sarkar, S. and Chang, C. K. (1997). Simes' method for multiple hypothesis testing with positively dependent test statistics. Journal of the American Statistical Association 92, 1601-1608.
Simes, R. J. (1986). An improved Bonferroni procedure for multiple tests of significance. Biometrika 73, 751-754.

[^0]: *Corresponding author: e-mail: atamhane@northwestern.edu, Phone: +1-847-491-3577, Fax: +1-847-491-8005

